Biodegradation and bioresorption of poly(ɛ-caprolactone) nanocomposite scaffolds.
نویسندگان
چکیده
A new type of hybrid three-dimensional scaffolds was prepared using poly(ɛ-caprolactone) (PCL) and chitosan-modified montmorillonite by solvent casting and particulate leaching method. The scaffolds were characterized by scanning electron microscopy coupled with energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and dynamic mechanical analysis to study the structural and mechanical properties. The resulting scaffolds displayed high porosity with highly interconnected pores. EDS analysis confirmed the elemental composition of the scaffolds. The phase composition of the scaffolds was shown by XRD, which also indicated a decrease in crystallinity with the introduction of nanoclay. Biodegradability studies which were conducted in simulated physiological conditions over a period of four weeks revealed that the PCL-based scaffolds degraded by hydrolysis at a slow rate. The overall bioresorbability was also slow, with the composite-based scaffolds recording a faster rate than the neat polymer-based scaffold.
منابع مشابه
Nanocalcium-deficient hydroxyapatite–poly (ɛ-caprolactone)–polyethylene glycol–poly (ɛ-caprolactone) composite scaffolds
A bioactive composite of nano calcium-deficient apatite (n-CDAP) with an atom molar ratio of calcium to phosphate (Ca/P) of 1.50 and poly(ɛ-caprolactone)-poly(ethylene glycol)-poly(ɛ-caprolactone) (PCL-PEG-PCL) was synthesized, and a composite scaffold was fabricated. The composite scaffolds with 40 wt% n-CDAP contained well interconnected macropores around 400 μm, and exhibited a porosity of 7...
متن کاملPreparation and Characterization of Aligned and Random Nanofibrous Nanocomposite Scaffolds of Poly (Vinyl Alcohol), Poly (e-Caprolactone) and Nanohydroxyapatite
Nanofibrous scaffolds produced by electrospinning have attracted much attention, recently. Aligned and random nanofibrous scaffolds of poly (vinyl alcohol) (PVA), poly (ε-caprolactone) (PCL) and nanohydroxyapatite (nHA) were fabricated by electrospinning method in this study. The composite nanofibrous scaffolds were subjected to detailed analysis. Morphological investigations revealed that the...
متن کاملIn vitro mechanical fatigue behavior of poly-ɛ-caprolactone macroporous scaffolds for cartilage tissue engineering: Influence of pore filling by a poly(vinyl alcohol) gel.
Polymeric scaffolds used in regenerative therapies are implanted in the damaged tissue and submitted to repeated loading cycles. In the case of articular cartilage engineering, an implanted scaffold is typically subjected to long-term dynamic compression. The evolution of the mechanical properties of the scaffold during bioresorption has been deeply studied in the past, but the possibility of f...
متن کاملElectrospun chitosan-graft-poly (ɛ-caprolactone)/poly (ɛ-caprolactone) nanofibrous scaffolds for retinal tissue engineering
A promising therapy for retinal diseases is to employ biodegradable scaffolds to deliver retinal progenitor cells (RPCs) for repairing damaged or diseased retinal tissue. In the present study, cationic chitosan-graft-poly(ɛ-caprolactone)/polycaprolactone (CS-PCL/PCL) hybrid scaffolds were successfully prepared by electrospinning. Characterization of the obtained nanofibrous scaffolds indicated ...
متن کاملScaffolding for challenging environments: materials selection for tissue engineered intestine.
Novel therapies are crucially needed for short bowel syndrome. One potential therapy is the production of tissue engineered intestine (TEI). The intestinal environment presents significant challenges to the selection of appropriate material for tissue engineering scaffolds. Our goal was to characterize different scaffold materials to downselect to that best suited for TEI production. To investi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of biological macromolecules
دوره 79 شماره
صفحات -
تاریخ انتشار 2015